We'll be missing you, Dr. Moog.

snosno 332 Posts
edited August 2005 in Strut Central

  Comments


  • MeepMeep 320 Posts
    damn. Just watched that moog doc yesterday and kep thinking how incredibly cool and humble dude was. RIP

  • SwayzeSwayze 14,705 Posts
    DAMN. RIP.

  • johmbolayajohmbolaya 4,472 Posts
    From moogmusic.com:

    Bob's Body Leaves Us

    ASHEVILLE, N.C. ??? August 21, 2005 ??? Bob died this afternoon at his home in Asheville, N.C. He was 71. Bob was diagnosed with brain cancer (glioblastoma multiforme or GBM) in late April 2005. He had received both radiation treatment and chemotherapy to help combat the disease. He is survived by his wife, Ileana, his five children, Laura Moog Lanier, Matthew Moog, Michelle Moog-Koussa, Renee Moog, and Miranda Richmond; and the mother of his children, Shirleigh Moog.

    Bob was warm and outgoing. He enjoyed meeting people from all over the world. He especially appreciated what Ileana referred to as "the magical connection" between music-makers and their instruments.

    No public memorial is planned. Fans and friends can direct their sympathies or remembrances to www.caringbridge.com/visit/bobmoog.

    Bob's family has established The Bob Moog Foundation dedicated to the Advancement of Electronic Music in his memory. Many of his longtime collaborators including musicians, engineers and educators have agreed to sit on its executive board including David Borden, Wendy Carlos, Joel Chadabpe, John Eaton, David Mash, and Rick Wakeman. For more information about the foundation, contact Matthew Moog at [email]mattmoog@yahoo.com.[/email]

    We'll miss you Bob.
    =====
    r.i.p. bob moog

  • Sun_FortuneSun_Fortune 1,374 Posts
    RIP and respect. Its REALLY amazing the impact he's had on music.

  • johmbolayajohmbolaya 4,472 Posts
    from Salon.com

    By Frank Houston



    April 25, 2000 | *In the 1920s a Russian inventor named Leon Theremin unveiled the first purely electronic instrument. You played the theremin by waving your hands in the vicinity of two metal rods, controlling pitch and volume, that were attached to a nondescript wooden cabinet. Between the strange arm motions and the instrument's invisible machinations, the theremin's overall effect in performance was theatrical and mysterious.


    But like the 200-ton telharmonium, the world's first mechanical music synthesizer (invented by Thaddeus Cahill around 1900), the theremin was difficult to play. It soon disappeared behind the curtain, relegated to cheap performances in B-grade alien-invasion movies. In 1955, four years after the theremin's eerily weepy sound was employed in "The Day the Earth Stood Still," RCA introduced the first modern synthesizer. The machine made sounds by manipulating electrical waves to denote timbre, pitch and volume. Like early computers, it filled a room and was tended by men in lab coats.


    A few years later Robert Moog, a graduate student in physics at Cornell University, published a magazine article explaining how to build a theremin, offering do-it-yourself kits for $49.95. Orders poured in, and Moog sold 1,000 that year. "We had $13,000 in the bank," he recalled recently, "a humongous cache of wealth for a graduate student back then!" The windfall enabled a career that helped bring electronic music out of the realm of novelty acts and university labs. A decade after the first RCA machine, Moog introduced the first widely adopted electronic instrument -- the synthesizer that bears his name.


    When Moog (rhymes with "vogue") unveiled the Moog music synthesizer in 1965, his engineering skills combined with a bit of business luck to radically change the way music was made. Synthesizers went from being computers to instruments that could be found in any music store. The flowering of rock music may have come via Leo Fender, Les Paul and the Gibson Guitar Co., but the innovative music of the early 21st century owes far more to Moog and his imitators and successors.


    - - - - - - - - - - - - - - - - - - - - -


    Growing up in the '40s in Flushing, Queens, Moog suffered the usual cruelties boys inflict on the smarter, more introverted members of their tribe: "I was the class brain," he recalled in one of several e-mail interviews. "I knew I was smarter than they were, so they felt compelled to beat me up periodically to keep me in my place." He spent a lot of time with his father, who liked to dabble in electronics, and started his own electronics projects. He built his first theremin with the help of a hobby-magazine article at age 14. "I was hooked," he recalled. Five years later, Moog published his own do-it-yourself theremin article.


    Moog's mother, meanwhile, gave him piano lessons and made him practice hours every day in the hope that he'd become a concert pianist, "klopping" him if he "didn't practice right." He found refuge in New York's prestigious Bronx High School of Science, where he "actually had some friends who were as nerdy as I was." Later, at Queens College, Moog finally developed what he called "a medical-minimum amount of social grace," and even started dating.


    After getting some exposure to the liberal arts at Columbia University's Engineering School, Moog began graduate education in the engineering physics department of Cornell University. He took eight years to get his Ph.D., largely because of his part-time hobby: building theremins and other electronic instruments. The degree came in 1965, a year after Moog launched his synthesizer business.


    Moog built his synthesizer in 1964 after a composer told him about the need for user-friendly electronic instruments utilizing new solid-state technology. The Moog was modular: You used patch cords to select your waveform (the sound's timbre) and frequency (pitch), and plugged in the interface -- a keyboard, instead of the binary code on paper that had defined the first RCAs. Moog's engineering wizardry did the rest.


    Significantly, Moog's was the first synthesizer to use attack-decay-sustain-release (ADSR) envelopes, set with four different knobs, which control the qualities of a sound's onset, intensity and fade. Like many of his designs, Moog's envelope generators became a basic component of later synthesizers. The sound was monophonic -- one note at a time -- but that was enough, since studio recording techniques could create whole orchestras from single notes by the late 1960s.


    RCA synthesizers, intended for an elite market of labs financed by universities and record companies, had cost $100,000 and up. In 1967 the new Moog sold for $11,000. It wasn't the only synthesizer around; many experts also commend Donald Buchla's modular synthesizer, built around the same time. But the Moog became prized for its utility and elegance, making Moog the name that brought synthesized music to the masses.


    "I remember seeing it as a teenager and thinking, 'I gotta get my hands on it,'" says Jeffrey Hass, director of the University of Indiana's Center for Electronic and Computer Music. "I wasn't alone. It had a tremendous impact on many people and brought electronic music to many composers, both popular and academic."


    The synthesizer also boasted the voltage-controlled lowpass filter that came to be known as the Moog filter, capable of making a variety of full horn, string and vocal timbres. The filter was patented in 1968, much to the envy of the competition, who "ate their hearts out," Moog says. They "all came up with voltage-controlled lowpass filters, but most of them sounded like ****, if I do say so myself."


    The Moog's biggest break came in 1969, when musician Walter (now Wendy) Carlos had a huge, Grammy-winning hit with "Switched-on Bach," popularizing electronic music with Moog-made renditions of Johann Sebastian Bach. Canadian pianist and Bach interpreter Glenn Gould said that Carlos' Fourth Brandenburg Concerto was "the finest performance of any of the Brandenburgs -- live, canned or intuited -- that I've ever heard."


    The Beatles introduced a new Moog in the majestic "Because," on "Abbey Road," the last album they recorded. The instrument was somehow perfectly suited to the layered, atmospheric vocals and John Lennon's ethereal lyrics. In 1971, Carlos brought the Moog to cinema, scoring Stanley Kubrick's "A Clockwork Orange" with electronic Beethoven whose gleeful perversity helped lend the movie its malevolent sheen.


    Still, these were products of studio recording. It took musicians with a talent for excess -- such as keyboardist Keith Emerson -- to tote the enormous Moog setup, a towering box of electronics, onto the stage for live shows. Ever mindful of utility, Moog next introduced the portable, performance-minded Minimoog. Rock-oriented musicians like Jan Hammer showed that the synthesizer could be used as an expressive lead instrument. Jazzers like Josef Zawinul used the instrument to "add new colors to the traditional sound world of jazz," says Doug Keislar, editor of the Computer Music Journal.


    "It was really the advent of the Minimoog that saw synthesizers take off," Keislar says. "The Minimoog showed that there was a significant market for portable, cheaper synthesizers." Or as Moog put it, in typically dry fashion, "By 1974 or so, having a Minimoog would make it a lot easier to get a job playing the local Ramada Inn."


    The Minimoog became the gold standard. "He hit it so right, everyone realized that was the way to do it. So everyone did it more or less the same," says Joel Chadabe, author of "Electric Sound: The Past and Promise of Electronic Music," who has known Moog since 1965. "Underlying all this was a basic quality. The sound of his instruments was really good."


    A century after Thomas Edison reproduced the first recorded sound, the synthesizer began to spread into musical genres from the avant-garde to jazz. In 1977, the instrument took a central role in emerging forms of electronic music, with Donna Summer's hit dance single, "I Feel Love," created almost entirely on Moog synthesizers, and German band Kraftwerk's "Trans Europe Express," an album of purely technological music.


    "The spirit of the times was very exciting," says Chadabe, who also serves as president of the Electronic Music Foundation. "You could start a basement business and really have an impact. Later on the real businessmen came in with their accountants and financial planning and a lot of capital, and the business matured."


    Moog admits he didn't have much of a head for the business end; his main goal has always been creating useful technology. "My transition from scientist to entrepreneur?" he asked in an e-mail. "Some would say that I still haven't made that transition," he joked. "I suddenly found myself in a growing business and I didn't know how to run it," Moog wrote of his early days. "I didn't know anything at all about business back then. I didn't know what a balance sheet was. I didn't know what cash flow was. So the business survived as long as it grew, but as soon as a contraction occurred, I ran out of money."


    In quick fashion, Moog's family business was bought out. The Micromoog was the last synthesizer created by Moog to bear his name. After musical instrument manufacturer Norlin took over his company, including synthesizer design, Moog spent the rest of his days at the company designing guitar effects, guitar amplifiers "and similar small electronic stuff." He left Moog Music in 1977, blaming corporate politics for his departure.


    When the Polymoog went into production in 1976, Moog says, "reliability-wise it was a disaster." It had been created by Norlin's new head of synthesizer design, David Luce. And why did Luce design synthesizers for Norlin while the man they were named for "was assigned to the technological provinces"? Just like his school days in Queens, Moog says, it came down to social skills: "Luce liked to go out and drink and socialize with the Norlin brass, and I didn't, or maybe couldn't."



    The first digital synthesizer, the Synclavier, had come along in 1975. Digital sound synthesis, invented in the 1950s, became an affordable and popular technology in the 1980s. Soon digital sampling, computers and MIDI (musical instrument digital interface) standardization swept through electronic music, transforming the landscape. While the 1960s and 1970s were the heyday of analog synthesis, a sound many musicians still prefer, computer-synthesized sound now had the technological edge.


    Moog largely eschewed the digital music revolution, though he had played a part in it. In 1978 he moved to North Carolina to launch Big Briar Productions and began making effects modules and control devices for electronic instruments. One of the first projects was an attempt to create a keyboard instrument that could be played as expressively as a violin. At the International Computer Music Conference in 1982, he introduced the multiple-touch-sensitive keyboard, developed with John Eaton of Indiana University. In addition to responding to the downward motion of a key, the keyboard also sensed the horizontal position of the finger playing it, opening up new dynamic possibilities.


    Later, at the behest of artists, he made a flat touch-plate interface. "Artist feedback drove all my development work," he recalls, listing examples dating from the beginning of his career: "The first synthesizers I made were in response to what Herb Deutsch wanted. The now-famous Moog filter was suggested by several musicians. The so-called ADSR envelope, which is now a basic element in all contemporary synthesizers and programmable keyboard isntruments, was originally specified in 1965 by Vladimir Ussachevsky, then head of the Columbia Princeton Electronic Music Center. The point is that I don't design stuff for myself. I'm a toolmaker. I design things that other people want to use."


    While Moog's Big Briar inventions have not had the sensational impact of the first Moog synths, they are creative, futuristic visions of alternative methods for playing electronic instruments. "Unfortunately, the trend is toward user interfaces that are simpler, not more complex. Most people don't care enough about the increased possibilities for expression to sacrifice years of their lives mastering an instrument," says Keislar. "They want to press a button and hear music come out. As a result, such systems are probably destined to remain experimental, even if elegant."


    Big Briar also makes effects modules such as the "moogerfooger," which mimics analog synthesizer timbres, one of which (Big Briar Moogerfooger Model MF101 Lowpass Filter) is based on the Moog filter. In 1997 Moog came out with a theremin (the Ethervox) based on the electronic instrument from the 1920s but featuring both a MIDI interface and a sound module that can re-create a theremin performance from MIDI data.


    Reflecting on the waves of synthesizers and musical innovation that followed in the Moog's wake, the inventor says the instrument "has introduced a vast array of new timbres and textures to the available palette of musical sound" and fostered what he calls "sound design." Much of contemporary music, Moog points out, "has as much to do with sculpting complex, slowly evolving sounds as it does with 'playing' fixed-timbre musical sounds." Moog's quotation marks underscore the plasticity of the concept.


    While some have credited Moog with helping to foment a "democratization of music," he will hear none of it. That societal shift came about thanks to "cheesy Casio and Yamaha keyboards that sold for $100 to $500" and were "small and portable and battery-powered, so you could take them to a party or to the beach," he says. "I see these devices as being on a branch of music technology that is completely separate from the analog synthesizers of the 1970s."


    His newest project is an "interactive piano" that manages to be both newfangled and old-fashioned. Designed with David Van Koevering, who helped to market the first Moogs, it is housed in the fine finished wood of a concert piano, but instead of strings under the lid, there is only a speaker. A touch screen the size of a laptop's takes the place of sheet music. The piano has 128 sounds, including a digitally sampled Steinway grand, and 256 tracks for recording. It will transcribe any composition onto the screen as fast as you can play it. Connect to the Web and download MIDI files to play along with in a kind of instrumental karaoke. Hook up a CD burner and make copies of your symphony, or print it on sheet music for that authentic touch. Its educational software is far more forgiving than was Moog's mother.


    Institutions as varied as the University of Miami and the New York Islanders use the $8,000 (and up) piano. But unlike Moog's synthesizers, the instrument is aimed more at musical tradition than musical innovation. "Before the radio and the phonograph, people made their own music, for themselves and for each other," Moog says. "People regularly got together to sing, play and dance with each other. Now, most of the music is recorded, and a lot of that is listened to by solitary people, isolated from their surroundings by headphones." Moog hopes that in the near future, "people will get tired of being in their own little boxes, and they'll come to understand that they would be a lot happier if there were more social music making in their lives."


    These days, Moog is accorded the respect and admiration of a great American inventor. In the fall of 1994, when the excellent documentary "Theremin: An Electronic Odyssey" had its debut at the New York Film Festival, Moog was greeted by warm applause when he w as recognized in the audience by the film's director, Steven Martin, during a post-screening Q&A. If most musically inclined people have some familiarity with the Moog, that's because Moog became a de facto leader when it came to introducing electronic music technology into the public consciousness.


    Moog also helped forever alter the creative process of music making. It's easy to forget that music was once an elite art, the province of those who could liberate the scrawl of notes on a page through specialized and sometimes highly technical mechanical expertise. Today, Danny Elfman, who composed the scores for the "Batman" movies, "The Simpsons" and countless other productions, has an advantage Beethoven and Mozart probably never dreamed possible: creating full orchestration with technology instead of sheet music.


    For Moog, it all goes back to his initial, sustaining fascination with the theremin: "Leon Theremin's original designs are elegant, ingenious and effective. As electronics goes, the theremin is very simple. But there are so many subtleties hidden in the details of the design. It's like a great sonnet, or a painting, or a speech, that is perfectly done on more than one level." The statement equally applies to Moog's own marvel of engineering.

  • GuzzoGuzzo 8,611 Posts
    DAMN. RIP.

  • kennykenny 1,024 Posts
    DAMN. RIP.

  • MjukisMjukis 1,675 Posts
    The story about how Sun Ra got a Moog to try out from Bob Moog and never returning it always makes me smile. Moog didn't seem to be too mad about it anyway. RIP.

  • m_dejeanm_dejean Quadratisch. Praktisch. Gut. 2,946 Posts
    A legend has left the building. One the most influential people in the music of the past 40 years. I can't even imagine what music - almost all genres - would sound like if Bob Moog had never existed. Respect the architect.

    For those who missed it, check out the Dutch TV interview that I also posted a couple of days ago:

    http://fatbaron.com/dutchtvbobmooginterview.wmv

  • Mr_Lee_PHDMr_Lee_PHD 2,042 Posts
    Respect

    Rest in peace.

  • upskibooupskiboo 2,396 Posts
    Respect

    Rest in peace.

    Very sad, R.I.P.

  • DubiousDubious 1,865 Posts
    truely a sad loss.

  • batmonbatmon 27,574 Posts




    Even though he has traveled on, his contribution to music will remain with us for a mighty long time.

    REST IN PEACE.

  • Very sad news. A legendary figure. The spiritual godfather of modern music. As well as being one of the most inspirational people you could ever talk to about music and music making. He gave so many musicians access to sounds they could only imagine in their mind's eye...

    Rest In Peace Dr Robert Moog.




  • batmonbatmon 27,574 Posts

  • much respect to the master of circuitry and melody.


    RIP, and thank you for your incredible contribution to audio culture.


  • slushslush 691 Posts
    he seemed like such a zen dude. and without a shred of ego. another cool genius gone.

  • Its weird, because in a way, Bob is responsible to the sound of todays music.

    but then again, he's also responsible for the 80s.








    Seriously though, Bob was a genius.

  • BaptBapt 2,503 Posts
    This is a great loss!!!

    Rest in Peace

  • Mike_BellMike_Bell 5,736 Posts
    from Salon.com

    By Frank Houston



    April 25, 2000 | *In the 1920s a Russian inventor named Leon Theremin unveiled the first purely electronic instrument. You played the theremin by waving your hands in the vicinity of two metal rods, controlling pitch and volume, that were attached to a nondescript wooden cabinet. Between the strange arm motions and the instrument's invisible machinations, the theremin's overall effect in performance was theatrical and mysterious.


    But like the 200-ton telharmonium, the world's first mechanical music synthesizer (invented by Thaddeus Cahill around 1900), the theremin was difficult to play. It soon disappeared behind the curtain, relegated to cheap performances in B-grade alien-invasion movies. In 1955, four years after the theremin's eerily weepy sound was employed in "The Day the Earth Stood Still," RCA introduced the first modern synthesizer. The machine made sounds by manipulating electrical waves to denote timbre, pitch and volume. Like early computers, it filled a room and was tended by men in lab coats.


    A few years later Robert Moog, a graduate student in physics at Cornell University, published a magazine article explaining how to build a theremin, offering do-it-yourself kits for $49.95. Orders poured in, and Moog sold 1,000 that year. "We had $13,000 in the bank," he recalled recently, "a humongous cache of wealth for a graduate student back then!" The windfall enabled a career that helped bring electronic music out of the realm of novelty acts and university labs. A decade after the first RCA machine, Moog introduced the first widely adopted electronic instrument -- the synthesizer that bears his name.


    When Moog (rhymes with "vogue") unveiled the Moog music synthesizer in 1965, his engineering skills combined with a bit of business luck to radically change the way music was made. Synthesizers went from being computers to instruments that could be found in any music store. The flowering of rock music may have come via Leo Fender, Les Paul and the Gibson Guitar Co., but the innovative music of the early 21st century owes far more to Moog and his imitators and successors.


    - - - - - - - - - - - - - - - - - - - - -


    Growing up in the '40s in Flushing, Queens, Moog suffered the usual cruelties boys inflict on the smarter, more introverted members of their tribe: "I was the class brain," he recalled in one of several e-mail interviews. "I knew I was smarter than they were, so they felt compelled to beat me up periodically to keep me in my place." He spent a lot of time with his father, who liked to dabble in electronics, and started his own electronics projects. He built his first theremin with the help of a hobby-magazine article at age 14. "I was hooked," he recalled. Five years later, Moog published his own do-it-yourself theremin article.


    Moog's mother, meanwhile, gave him piano lessons and made him practice hours every day in the hope that he'd become a concert pianist, "klopping" him if he "didn't practice right." He found refuge in New York's prestigious Bronx High School of Science, where he "actually had some friends who were as nerdy as I was." Later, at Queens College, Moog finally developed what he called "a medical-minimum amount of social grace," and even started dating.


    After getting some exposure to the liberal arts at Columbia University's Engineering School, Moog began graduate education in the engineering physics department of Cornell University. He took eight years to get his Ph.D., largely because of his part-time hobby: building theremins and other electronic instruments. The degree came in 1965, a year after Moog launched his synthesizer business.


    Moog built his synthesizer in 1964 after a composer told him about the need for user-friendly electronic instruments utilizing new solid-state technology. The Moog was modular: You used patch cords to select your waveform (the sound's timbre) and frequency (pitch), and plugged in the interface -- a keyboard, instead of the binary code on paper that had defined the first RCAs. Moog's engineering wizardry did the rest.


    Significantly, Moog's was the first synthesizer to use attack-decay-sustain-release (ADSR) envelopes, set with four different knobs, which control the qualities of a sound's onset, intensity and fade. Like many of his designs, Moog's envelope generators became a basic component of later synthesizers. The sound was monophonic -- one note at a time -- but that was enough, since studio recording techniques could create whole orchestras from single notes by the late 1960s.


    RCA synthesizers, intended for an elite market of labs financed by universities and record companies, had cost $100,000 and up. In 1967 the new Moog sold for $11,000. It wasn't the only synthesizer around; many experts also commend Donald Buchla's modular synthesizer, built around the same time. But the Moog became prized for its utility and elegance, making Moog the name that brought synthesized music to the masses.


    "I remember seeing it as a teenager and thinking, 'I gotta get my hands on it,'" says Jeffrey Hass, director of the University of Indiana's Center for Electronic and Computer Music. "I wasn't alone. It had a tremendous impact on many people and brought electronic music to many composers, both popular and academic."


    The synthesizer also boasted the voltage-controlled lowpass filter that came to be known as the Moog filter, capable of making a variety of full horn, string and vocal timbres. The filter was patented in 1968, much to the envy of the competition, who "ate their hearts out," Moog says. They "all came up with voltage-controlled lowpass filters, but most of them sounded like ****, if I do say so myself."


    The Moog's biggest break came in 1969, when musician Walter (now Wendy) Carlos had a huge, Grammy-winning hit with "Switched-on Bach," popularizing electronic music with Moog-made renditions of Johann Sebastian Bach. Canadian pianist and Bach interpreter Glenn Gould said that Carlos' Fourth Brandenburg Concerto was "the finest performance of any of the Brandenburgs -- live, canned or intuited -- that I've ever heard."


    The Beatles introduced a new Moog in the majestic "Because," on "Abbey Road," the last album they recorded. The instrument was somehow perfectly suited to the layered, atmospheric vocals and John Lennon's ethereal lyrics. In 1971, Carlos brought the Moog to cinema, scoring Stanley Kubrick's "A Clockwork Orange" with electronic Beethoven whose gleeful perversity helped lend the movie its malevolent sheen.


    Still, these were products of studio recording. It took musicians with a talent for excess -- such as keyboardist Keith Emerson -- to tote the enormous Moog setup, a towering box of electronics, onto the stage for live shows. Ever mindful of utility, Moog next introduced the portable, performance-minded Minimoog. Rock-oriented musicians like Jan Hammer showed that the synthesizer could be used as an expressive lead instrument. Jazzers like Josef Zawinul used the instrument to "add new colors to the traditional sound world of jazz," says Doug Keislar, editor of the Computer Music Journal.


    "It was really the advent of the Minimoog that saw synthesizers take off," Keislar says. "The Minimoog showed that there was a significant market for portable, cheaper synthesizers." Or as Moog put it, in typically dry fashion, "By 1974 or so, having a Minimoog would make it a lot easier to get a job playing the local Ramada Inn."


    The Minimoog became the gold standard. "He hit it so right, everyone realized that was the way to do it. So everyone did it more or less the same," says Joel Chadabe, author of "Electric Sound: The Past and Promise of Electronic Music," who has known Moog since 1965. "Underlying all this was a basic quality. The sound of his instruments was really good."


    A century after Thomas Edison reproduced the first recorded sound, the synthesizer began to spread into musical genres from the avant-garde to jazz. In 1977, the instrument took a central role in emerging forms of electronic music, with Donna Summer's hit dance single, "I Feel Love," created almost entirely on Moog synthesizers, and German band Kraftwerk's "Trans Europe Express," an album of purely technological music.


    "The spirit of the times was very exciting," says Chadabe, who also serves as president of the Electronic Music Foundation. "You could start a basement business and really have an impact. Later on the real businessmen came in with their accountants and financial planning and a lot of capital, and the business matured."


    Moog admits he didn't have much of a head for the business end; his main goal has always been creating useful technology. "My transition from scientist to entrepreneur?" he asked in an e-mail. "Some would say that I still haven't made that transition," he joked. "I suddenly found myself in a growing business and I didn't know how to run it," Moog wrote of his early days. "I didn't know anything at all about business back then. I didn't know what a balance sheet was. I didn't know what cash flow was. So the business survived as long as it grew, but as soon as a contraction occurred, I ran out of money."


    In quick fashion, Moog's family business was bought out. The Micromoog was the last synthesizer created by Moog to bear his name. After musical instrument manufacturer Norlin took over his company, including synthesizer design, Moog spent the rest of his days at the company designing guitar effects, guitar amplifiers "and similar small electronic stuff." He left Moog Music in 1977, blaming corporate politics for his departure.


    When the Polymoog went into production in 1976, Moog says, "reliability-wise it was a disaster." It had been created by Norlin's new head of synthesizer design, David Luce. And why did Luce design synthesizers for Norlin while the man they were named for "was assigned to the technological provinces"? Just like his school days in Queens, Moog says, it came down to social skills: "Luce liked to go out and drink and socialize with the Norlin brass, and I didn't, or maybe couldn't."



    The first digital synthesizer, the Synclavier, had come along in 1975. Digital sound synthesis, invented in the 1950s, became an affordable and popular technology in the 1980s. Soon digital sampling, computers and MIDI (musical instrument digital interface) standardization swept through electronic music, transforming the landscape. While the 1960s and 1970s were the heyday of analog synthesis, a sound many musicians still prefer, computer-synthesized sound now had the technological edge.


    Moog largely eschewed the digital music revolution, though he had played a part in it. In 1978 he moved to North Carolina to launch Big Briar Productions and began making effects modules and control devices for electronic instruments. One of the first projects was an attempt to create a keyboard instrument that could be played as expressively as a violin. At the International Computer Music Conference in 1982, he introduced the multiple-touch-sensitive keyboard, developed with John Eaton of Indiana University. In addition to responding to the downward motion of a key, the keyboard also sensed the horizontal position of the finger playing it, opening up new dynamic possibilities.


    Later, at the behest of artists, he made a flat touch-plate interface. "Artist feedback drove all my development work," he recalls, listing examples dating from the beginning of his career: "The first synthesizers I made were in response to what Herb Deutsch wanted. The now-famous Moog filter was suggested by several musicians. The so-called ADSR envelope, which is now a basic element in all contemporary synthesizers and programmable keyboard isntruments, was originally specified in 1965 by Vladimir Ussachevsky, then head of the Columbia Princeton Electronic Music Center. The point is that I don't design stuff for myself. I'm a toolmaker. I design things that other people want to use."


    While Moog's Big Briar inventions have not had the sensational impact of the first Moog synths, they are creative, futuristic visions of alternative methods for playing electronic instruments. "Unfortunately, the trend is toward user interfaces that are simpler, not more complex. Most people don't care enough about the increased possibilities for expression to sacrifice years of their lives mastering an instrument," says Keislar. "They want to press a button and hear music come out. As a result, such systems are probably destined to remain experimental, even if elegant."


    Big Briar also makes effects modules such as the "moogerfooger," which mimics analog synthesizer timbres, one of which (Big Briar Moogerfooger Model MF101 Lowpass Filter) is based on the Moog filter. In 1997 Moog came out with a theremin (the Ethervox) based on the electronic instrument from the 1920s but featuring both a MIDI interface and a sound module that can re-create a theremin performance from MIDI data.


    Reflecting on the waves of synthesizers and musical innovation that followed in the Moog's wake, the inventor says the instrument "has introduced a vast array of new timbres and textures to the available palette of musical sound" and fostered what he calls "sound design." Much of contemporary music, Moog points out, "has as much to do with sculpting complex, slowly evolving sounds as it does with 'playing' fixed-timbre musical sounds." Moog's quotation marks underscore the plasticity of the concept.


    While some have credited Moog with helping to foment a "democratization of music," he will hear none of it. That societal shift came about thanks to "cheesy Casio and Yamaha keyboards that sold for $100 to $500" and were "small and portable and battery-powered, so you could take them to a party or to the beach," he says. "I see these devices as being on a branch of music technology that is completely separate from the analog synthesizers of the 1970s."


    His newest project is an "interactive piano" that manages to be both newfangled and old-fashioned. Designed with David Van Koevering, who helped to market the first Moogs, it is housed in the fine finished wood of a concert piano, but instead of strings under the lid, there is only a speaker. A touch screen the size of a laptop's takes the place of sheet music. The piano has 128 sounds, including a digitally sampled Steinway grand, and 256 tracks for recording. It will transcribe any composition onto the screen as fast as you can play it. Connect to the Web and download MIDI files to play along with in a kind of instrumental karaoke. Hook up a CD burner and make copies of your symphony, or print it on sheet music for that authentic touch. Its educational software is far more forgiving than was Moog's mother.


    Institutions as varied as the University of Miami and the New York Islanders use the $8,000 (and up) piano. But unlike Moog's synthesizers, the instrument is aimed more at musical tradition than musical innovation. "Before the radio and the phonograph, people made their own music, for themselves and for each other," Moog says. "People regularly got together to sing, play and dance with each other. Now, most of the music is recorded, and a lot of that is listened to by solitary people, isolated from their surroundings by headphones." Moog hopes that in the near future, "people will get tired of being in their own little boxes, and they'll come to understand that they would be a lot happier if there were more social music making in their lives."


    These days, Moog is accorded the respect and admiration of a great American inventor. In the fall of 1994, when the excellent documentary "Theremin: An Electronic Odyssey" had its debut at the New York Film Festival, Moog was greeted by warm applau se when he was recognized in the audience by the film's director, Steven Martin, during a post-screening Q&A. If most musically inclined people have some familiarity with the Moog, that's because Moog became a de facto leader when it came to introducing electronic music technology into the public consciousness.


    Moog also helped forever alter the creative process of music making. It's easy to forget that music was once an elite art, the province of those who could liberate the scrawl of notes on a page through specialized and sometimes highly technical mechanical expertise. Today, Danny Elfman, who composed the scores for the "Batman" movies, "The Simpsons" and countless other productions, has an advantage Beethoven and Mozart probably never dreamed possible: creating full orchestration with technology instead of sheet music.


    For Moog, it all goes back to his initial, sustaining fascination with the theremin: "Leon Theremin's original designs are elegant, ingenious and effective. As electronics goes, the theremin is very simple. But there are so many subtleties hidden in the details of the design. It's like a great sonnet, or a painting, or a speech, that is perfectly done on more than one level." The statement equally applies to Moog's own marvel of engineering.
    Serious knowledge dropped. It's sad that he had that illness before he passed on. He's in a better place now...RIP.
Sign In or Register to comment.